Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model

نویسندگان

  • Karen M. Shell
  • Richard C. J. Somerville
چکیده

[1] Airborne mineral dust can influence the climate by altering the radiative properties of the atmosphere, but the magnitude of the effect is uncertain. An idealized global model is developed to study the dust-climate system. The model determines the dust longwave and shortwave direct radiative forcing, as well as the resulting temperature changes, based on the specified dust distribution, height, and optical properties. Comparisons with observations and general circulation results indicate that the model produces realistic results for the present-day dust distribution as well as for volcanic aerosols. Although the model includes many simplifications, it can still provide insight into dust-climate system behavior. Recent observations suggest that dust may absorb less solar radiation than previously thought. Experiments with the model suggest that previous studies which used more absorbing dust may be underestimating the effect of dust. Increasing the solar single scattering albedo value from 0.85 to 0.97, corresponding to recent measurements, more than doubles the modeled global average top-of-theatmosphere (TOA) shortwave direct forcing for the present-day dust distribution, while the surface shortwave forcing is halved. The corresponding temperature decreases are larger for the larger single scattering albedo, and the latent and sensible heat fluxes decreases are smaller. The dust forcing and climate response are approximately linear with respect to optical depth. However, the relationship depends on the relative magnitudes of shortwave versus longwave TOA forcing. Thus the net TOA forcing alone does not determine the steady state climate response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physics of Aerosols and Their Effect on Climate

Classes of atmospheric aerosols and their main sources, distributions of tropospheric aerosol by size and mass, their physico-chemical composition and principal optical properties in various spectral bands are described. Stratospheric aerosols in “quiet” and “disturbed” periods after the major volcanic eruptions, their interactions with clouds and of underlying surface radiative properties affe...

متن کامل

Climate effects of dust aerosols over East Asian arid and semiarid regions

East Asia is a major dust source in the world. Mineral dusts in the atmosphere and their interactions with clouds and precipitation have great impacts on regional climate in Asia, where there are large arid and semiarid regions. In this review paper, we summarize the typical transport paths of East Asian dust, which affect regional and global climates, and discuss numerous effects of dust aeros...

متن کامل

Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model

[1] Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II0, that simulates coupled tropospheric ozone-NOxhydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled ga...

متن کامل

Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates

[1] Mineral aerosol impacts on climate through radiative forcing by natural dust sources are examined in the current, last glacial maximum, pre-industrial and doubled-carbon dioxide climate. Modeled globally averaged dust loadings change by +88%, +31% and 60% in the last glacial maximum, pre-industrial and future climates, respectively, relative to the current climate. Model results show global...

متن کامل

The role of convective plumes and vortices on the global aerosol budget

[1] Atmospheric aerosols produce both a direct radiative forcing by scattering and absorbing solar and infrared radiation, and an indirect radiative forcing by altering cloud processes. Therefore, it is essential to understand the physical processes that contribute to the global aerosol budget. The International Panel on Climate Change (IPCC) reports that mineral dust contributes to 1/3 of all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006